

Vivekanand Education Society's Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Department of Humanities and Applied

Sciences

Syllabus (NEP Scheme)

First year Bachelor of Engineering(B.Tech)

Sem-I & Sem II

w.e.f. A.Y. 2024-25

Group B

Artificial Intelligence and Data Science

Electronics and Telecommunications

Electronics and Computer Science

Automation and Robotics

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Semester I Scheme									
Group B (AI & DS, EXTC, ETCS, AU & RO)									
Course Type	Course code	Course Name	Teac	hing Schem	ie		Credits A	ssigned	
			(Co	ontact hrs)					
			Th	Pr	Tut	Th	Pr	Tut	Total
Basic Science Course (BS)	NBS11	Fundamentals of Engineering Mathematics-1	02		01	02		01	03
Basic Science Course (BS)	NBS13	Engineering Chemistry	02	02	-	02	01		03
Basic Science Course (BS)	NBS14	Biology for Engineers	02		-	02			02
Engineering Science Course (ES)	NES14 Fundamentals of Programming (C/Java)		03	02	-	03	01		04
Programme Core	NPC11 NPC12								
Course (PC)	NPC12 NPC13	Programme Core Course	02	-	-	02	-	-	02
	NPC14	1							
Indian Knowledge System (IK)	NIK11	Fundamentals of Vedic Mathematics	02		-	02			02
Value Education (VE)	NVE11	Universal Human Values-1	02			02			02
Vocational/Skill Enhancement course (VS)	NVS11	Basic Workshop Practice	-	04	-	-	02	-	02
Co curricular Activity (CC)	NCC11	Co curricular Course		04		-	02		02
		Total C	redit	•					22

Tutorials to be conducted batchwise

NPC11-Programme Core Course for AI & DS- Digital logic and Computer Organization & Architecture

NPC12- Programme Core Course for EXTC-Digital System

NPC13- Programme Core Course for ETCS-Digital Electronics

NPC14-Programme Core Course for AU & RO-Electronic measurement and instrumentation

NES14-Fundamentals of Programming-OOPM (JAVA Programming)(AI & DS)

NES14-Fundamentals of Programming-C Programming) (EXTC, ETCS and AU & RO)

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

	Semester I Marks Scheme								
Group B (AI & DS, EXTC, ETCS, AU & RO)									
Course Type	Course code	Course Name	тн	MT	CA	TW	PR/ OR	Total	
Basic Science Course (BS)	NBS11	Fundamentals of Engineering Mathematics-1	60	20	20		-	100	
Basic Science Course (BS)	NBS13	Engineering Chemistry	60	20	20	25	-	125	
Basic Science Course (BS) NBS14		Biology for Engineers	60	20	20		-	100	
Engineering Science Course (ES)	NES14	Fundamentals of Programming (C/Java)	60	20	20	25	_	125	
Programme Core Course (PC)	NPC11 NPC12 NPC13 NPC14	Programme Core Course	60	20	20	-	-	100	
Indian Knowledge System (IK)	NIK11	Fundamentals of Vedic Mathematics	-	-	20		-	20	
Value Education (VE)	NVE11	Universal Human Values-1	-	-	20		-	20	
Vocational/Skill Enhancement course (VS)	NVS11	Basic Workshop Practice	-	-	-	50	-	50	
Co curricular Activity (CC)	NCC11	Co curricular Course	-	-	-	-	25	25	
Total Marks									

NPC11-Programme Core Course for AI & DS- Digital logic and Computer Organization & Architecture

NPC12- Programme Core Course for EXTC-Digital System

NPC13- Programme Core Course for ETCS-Digital Electronics

 ${\bf NPC14\text{-}Programme\ Core\ Course\ for\ AU\ \&\ RO\text{-}Electronic\ measurement\ and\ instrumentation}$

NES14-Fundamentals of Programming-OOPM (JAVA Programming)(AI & DS)

NES14-Fundamentals of Programming-C Programming)(EXTC, ETCS and AU & RO)

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

		Semeste	er II Sc	heme					
Course Type	Course code	Course Name		aching Scheme (Contact hrs)	?		ed		
			Th	Pr	Tut	Th	Pr	Tut	Total
Basic Science Course (BS)	NBS21	Fundamentals of Engineering Mathematics-2	02		01	02		01	03
Basic Science Course (BS)	NBS22	Engineering Physics	02	02	-	02	01		03
Engineering NES21 Engineering Mechanics Science Course (ES)		02		1	02			02	
Engineering Science Course (ES)	NES22	Engineering Drawing	-	02 (DH)+ 02(AutoCAD)	-	-	02		02
Engineering Science Course (ES)	NES23	Basic Electrical Engineering	03	02	1	03	01		04
Ability Enhancement Course (AE)	NAE21	Professional Communications and Ethics-I	01		02	01		01	02
Value Education (VE)	NVE22	Universal Human Values-2	02			02			02
Co curricular Activity (CC)	NCC22	Co curricular Course		04		-	02		02
Total Credits							20		

Tutorials to be conducted batchwise

^{*} Instructions should be conducted for the entire class

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Semester I Marks Scheme								
Course Type	Course code	Course Name	ТН	МТ	CA	TW	PR/ OR	Total
Basic Science	NBS21	Fundamentals of	60	20	20		_	100
Course (BS)		Engineering						
		Mathematics-2						
Basic Science	NBS22	Engineering Physics	60	20	20	25	_	125
Course								
(BS)								
Engineering	NES21	Engineering	60	20	20		-	100
Science Course		Mechanics						
(ES)								
Engineering	NES22	Engineering Drawing	-	-		25	25	50
Science Course								
(ES)								
Engineering	NES23	Basic Electrical	60	20	20	25	-	125
Science Course		Engineering						
(ES)								
Ability		Professional	-	20	80		-	100
Enhancement	NAE21	Communications and						
Course (AE)		Ethics-I						
Value Education	NVE22	Universal Human	-	-	20		-	20
(VE)		Values-2						
Co curricular	NCC22	Co curricular Course	-	-	-	-	25	25
Activity								
(CC)								
		Total I	Marks					645

Vivekanand Education Society's Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Semester I

Syllabus

Group B

Artificial Intelligence and Data Science

Electronics and Telecommunications

Electronics and Computer Science

Automation and Robotics

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: FUNDAMENTALS OF ENGINEERING MATHEMATICS-1

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
	Course Name	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
NBS11	Fundamentals of Engineering Mathematics-1 (Theory)	02		01*	02		01	03

Fundamentals of Engineering Mathematics-1(Theory)

Course	Carrier Name		ning Scheme	Credits Assigned					
Code	Course Name	Theory	Practical	Tutor ial	Theor y	TW/PR	Tut	Total	
NBS11	Fundamentals of Engineering Mathematics-1 (Theory)	02		01*	02		01	03	
			Examination Scheme						
Course		Theory				Dugatical			
Code	Course Name	Internal As		Term	Practical &	Total			
douc		Mid-Term Test	Continu ous Assessm ent	End Sem Exam	Work	Oral	iotai		
NBS11	Fundamentals of Engineering Mathematics-1 (Theory)	20 20		60			100		

Tutorials to be conducted batchwise

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Course Prerequisite: Matrices and Matrix Operations, Algebraic Properties of Matrices, Method for Finding inverse of a matrix- By elementary transformation and by adjoint of a matrix, Types of real matrices, Basics of Differentiation, Basics of Differential Equations **Course Objectives:** 1 To provide students with contemporary knowledge about different types of Matrices and their Ranks 2 To learn about concept and applications of complex numbers 3 To explore the solution methods using Partial derivatives and its concepts. 4 To apply concept of Partial differentiation to find extreme values of a function 5 To learn about solution methods of first order and first degree ordinary differential equations **Course Outcomes:** 1 Students would develop the ability to understand and work with real and complex matrices, their properties, ranks and apply these concepts to solve problems in various fields. 2 Students should be introduced to complex functions and their properties. Also understand the concept of using De' Moivre's application to find roots and power of complex numbers. 3 Students are able to gain an overview of partial derivatives which is used for solving various engineering problems. Student would develop the ability to apply concept of partial differentiation to find extreme values of a 4 function. 5 Students would develop the ability to analyze and solve first order and first degree ordinary differential equations, apply mathematical techniques to interpret the solutions in the context of the problem.

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Мо	dule	Content	Hrs
1		Matrices and its application	6
	1.1	Real and Complex Matrices : Orthogonal Matrices, Symmetric Matrices, Skew-symmetric matrices, Hermitian, Skew-hermitian Unitary matrices (Properties and Examples)	
	1.2	Rank of a Matrix: Elementary Matrices ,rank of a matrix by Echelon form and Normal form	
	1.3	Introduction to Non- Homogeneous Systems of Linear Equations: consistency and solution	
	1.4	Introduction to Systems of Homogeneous Linear Equations: consistency and solution	
2		Complex Number I	10
	2.1	Powers and Roots of complex numbers (Applications of De' Moivre's theorem)	
	2.2	Circular and Hyperbolic Functions of Complex Numbers, logarithm of complex number, Separation into real and imaginary parts for all functions	
3		Partial Derivatives	4
	3.1	Functions of Several Variables, Partial Derivatives, The Chain Rule	
	3.2	Euler's theorems on homogeneous functions with two independent variables with proof deductions from Euler's theorem and examples (Two variables)	
4		Applications of Partial Differentiation	2
	4.1	Extreme Values and Saddle Points, Maxima and Minima	
5		Differential Equations of first order and first degree	6
	5.1	Exact differential equations, Equations reducible to exact equations by integrating factors.	
	5.2	Linear differential equations, Equation reducible to linear form, Bernoulli's equation.	
		Total	28

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Tex	Textbooks:							
1	R.K.Jain and S.R.K.Iyengar "Advanced Engineering Mathematics",Alpha science International Ltd.							
2	Advanced Engineering Mathematics, H.K Dass,S. Chand Publications							
Ref	Reference Books:							
1	Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, Inc							
2	B.S. Grewal, " Higher Engineering Mathematics",Khanna Publication							
3	George B. Thomas, Weir & Hass, "Thomas' Calculus",Pearson							
4	George F. Simmons, "Differential Equations with Application", Tata Mc. Graw Hill Edition							
5	Howard Anton, Chris Rorres,"Elementary Linear Algebra",wiley Publication							

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

7	Participation in event/workshop/talk / competition followed bysmall report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

End S	End Semester Theory Examination:						
1	Question paper will be of 60 marks						
2	Question paper will have a total of five questions						
3	All questions have equal weightage and carry 20 marks each						
4	Any three questions out of five need to be solved.						

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: ENGINEERING CHEMISTRY

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		(1)	Teaching Hou	rs)					
		Theory	Practical	Theory	TW/PR	Tut	Total		
NBS13	Engineering Chemistry (Theory)	02			02			02	
NBS23	Engineering Chemistry (Lab)		02			01		01	

Engineering Chemistry (Theory)

Course	Course Nome		ning Scheme hing Hours)			Credits Assi	gned	
Code	Course Name	Theory	Practical	Tutor ial	Theor y	TW/PR	Tut	Total
NBS13	Engineering Chemistry (Theory)	02			02			02
				Exami	nation Sch	eme		
Course			Theory			Duo ati aal		
Course Code	Course Name	Internal As	sessment		Term	Practical &	т.	otal
Code		Mid-Term Test	Continuo us Assessm ent	End Sem Exam	Work	Oral	10	itai
NBS13	Engineering Chemistry (Theory)	20	20	60			100	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Cours	e Objectives:	
1	The course is aimed to develop the basic skills of engineering students that are imperative for effective understanding of engineering subjects. The topics introduced will serve as basic tools for specialized studies in many fields of engineering and technology.	
Cours	e Outcomes:	
1	Thermodynamics-:To understand basic concepts of thermodynamics & implement it on relative topics in other modules like fuel.	
2	Water-:Analyze the quality of water and suggest suitable methods of treatment	
3	Fuel-:Explain the knowledge of determining the quality of fuel and quantify the oxygen required for combustion of fuel.	
4	Corrosion-: Explain the concept of electrode potential and nernst theory and relate it to electrochemical cells. Identify different types of corrosion and suggest control measures in industries.	

Engineering Chemistry (Lab)

Course	Course Name	Teaching Scheme (Teaching Hours)		Credits Assigned					
Code	Course Name	Theory	Practical	Tutor ial	Theo ry	Practical	Tut	Total	
NBS23	Engineering Chemistry (lab)		02			01		02	
		Examination Scheme							
Course		Theory			Practical				
Course Code	Course Name	Internal Assessment		End	Term	&	,	Total	
Code		Mid-Term	Continuous	Sem	Work	oral	,	iotai	
		Test	Assessment	Exam		Orai			
NBS23	Engineering Chemistry (lab)				25	-		25	

Lab Ou	Lab Outcomes		
1	Determine Chloride content and hardness of water sample		
2	Determine the hardness of a given sample of water by complexometric titration using EDTA.		

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

3	Determine metal ion concentration of given sample solution using colorimeter.
4	Synthesize UF, PF polymers.
5	Determine the moisture content of the given coal sample.
6	Measure the saponification number of given oil samples.
7	Determine the acid value of the given oil sample.

Engineering Chemistry (Theory)

Module	Content	Hrs
1	Thermodynamics Thermodynamic terms & basic concepts, System, boundary, surrounding, homogeneous and heterogeneous system, types of thermodynamic system (isolated, closed, open), Intensive & extensive properties, equilibrium, nonequilibrium states, Thermodynamic processes (adiabatic, isothermal, isobaric, isochoric), Reversible & irreversible processes, Units of heat and work, sign and convention of heat & work, Pressure, volume work, Isothermal reversible expansion work, Isothermal irreversible expansion work, Maximum work done in reversible expansion, Units of internal energy, 1st law of thermodynamics, Enthalpy of system, Units & sign convention of enthalpy, Relation between ΔH & ΔU , Heat Capacity, Molar heat capacity at constant volume, Molar heat capacity at constant pressure, Relation between ΔE & ΔH , Exothermic and Endothermic Reaction, Enthalpy of a reaction, Calculation ΔE & ΔH , Heat of reaction/enthalpy of reaction, Heat of Formation, Heat of Combustion, Hess's Law, Numericals related to the topics.	6 Hrs
2	Water Introduction-Impurities in water, hardness of water-units, types and numerical problems, determination of hardness of water by EDTA method and numericals, Softening of water by an Ion Exchange process and numericals, BOD, COD- definition, significance and numericals, Water purification-membrane technology-: Electrodialysis, Reverse Osmosis and Ultrafiltration	6 Hr
3	Fuel Definition, classification, characteristics of a good fuel, units of heat, Calorific value-Definition, Gross or Higher calorific value and Net or lower calorific value, Dulong's formula and numericals for calculations of Gross and Net Calorific Values Solid fuels-Analysis of coal-Proximate and Ultimate Analysis-numericals and significance Liquid fuels-Petrol-knocking, Octane Number, Cetane number, Anti Knocking agents, unleaded petrol, oxygenates (MTBE), catalytic converter Combustion-calculation for requirement of oxygen and air (by weight and by volume only for given fuels.)	6 Hr
4	Corrosion	6 Hr

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Definition, Mechanism of Corrosion-(i) Dry / Chemical Corrosion- (a) Due to Oxygen (b) Due to other gasses (ii) Wet/ Electrochemical Corrosion- Mechanism (a) Evolution of hydrogen (b)	
Absorption of oxygen gas	
Types of Corrosion- Galvanic Cell Corrosion, Concentration Cell Corrosion, Pitting Corrosion,	
Intergranular Corrosion, Stress Corrosion Factors affecting the rate of corrosion-(i)Nature of metal, (ii) Nature of corroding environment	
Methods of corrosion control-Material selection and proper designing, Cathodic	
protection-(i)Sacrificial anodic protection, (ii) Impressed current method, Metallic coatings-	
cathodic coating (Tinning) and anodic coating (Galvanizing)	
Total	24

Refer	Reference Books:	
R1	Engineering Chemistry - Jain & Jain (Dhanpat Rai)	
R2	Engineering Chemistry – Dara & Dara (S Chand)	
R3	A Text Book of Engineering Chemistry – Shashi Chawla (Dhanpat Rai)	

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

End S	End Semester Theory Examination:	
1	Question paper will be of 60 marks	
2	Question paper will have a total of five questions	
3	All questions have equal weightage and carry 20 marks each	
4	Any three questions out of five needs to be solved.	

Engineering Chemistry (Lab)

Suggeste	Suggested Experiments: Students are required to complete at least 10 experiments.		
Star (*) m	arked experiments are compulsory.		
Sr. No.	Name of the Experiment		
1	To determine Chloride content of water by Mohr's Method.		
2	To determine total, temporary and permanent hardness of water sample by EDTA		
3	To determine metal ion concentration using a colorimeter.		
4	Synthesis of polymers		
5	To determine the moisture content of the coal		
6	To determine the saponification number of oil.		
7	To determine the acid value of the oil		

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term	Term Work:					
1	Term work should consist of 10 experiments.					
2	The final certification and acceptance of term work ensures satisfactory performance of					
	laboratory work and minimum passing marks in term work.					

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

3	Total 25 Marks
	(Experiments: 15-marks, Term work Assessment: 10-marks)

COURSE NAME: BIOLOGY FOR ENGINEERS

Course Code	Course Name	Teaching Scheme (Teaching Hours)				Credits Ass	igned	
NBS14	Biology for Engineers (Theory)	Theory 02	Practical 	Tutorial 	Theory 02	TW/PR	Tut	Total 02

Biology for Engineers (Theory)

Course	Course Name		ning Scheme hing Hours)		Credits Assigned				
Code	Course Name	Theory	Practical	Tutor ial	Theor y	TW/PR	Tut	Total	
NBS14	Biology for Engineers (Theory)	02			02			02	
			Exa	ıminatio	n Scheme				
Course	Course Name	Theory				m Practical			
Code		Internal As		Term		т.	ntal		
Code		Mid-Term Test	Continuo us Assessm ent	End Sem Exam	Work	1 X ₇	Total		
NBS14	Biology for Engineers (Theory)	20	20	60			1	.00	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Course O	Course Objectives:					
1	To introduce the students to the basic concepts of biological systems.					
2	To provide awareness about the similarity between human systems and machines.					
3	To motivate for applying technology for challenges in biological systems					
Course O	Course Outcomes: On successful completion of course learner/student will be able to:					
1	Describe the basic working of human cell and bio-signal generation					
2	Describe the fundamentals of human nervous system					
3	Identify the similarity between human neural system and artificial neural system					
4	Explain the development of artificial assist devices mimicking human sense organs					

Biology for Engineers (Theory)

Module	Content	Hrs
Prereq	uisite: Knowledge of various biological systems.	
1	Need of Biology for engineers Role of Biology in Next Generation Technology Development – Cell Structure, Cell Potential, Action Potential, Bio-signals such as ECG, EEG and EMG and their specifications.	06
2	Fundamentals of Human nervous system Nervous system- Nerve cell, neuronal communication, nerve-muscle physiology, Central Nervous system, Peripheral nervous system, Brain and its lobes, Brain centres, Brain plasticity and accelerated learning *.	06
3	Artificial Neural Network Comparison of human neuron with artificial neuron, Evolution of Artificial Neural Networks, Neural Networks and Representation: Perceptron, Multilayer perceptron, weights and bias, Gradient Descent, basic concept of back propagation.	07
4	Sense organs and prosthetic devices Sense organs and their working, mechanism of sensing, artificial sense organs and their development, basics of artificial eye, artificial ear and prosthetic limb, introduction to cardiac pacemaker.	07
	Total	26

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Text 1	Books:
1	Leslie Cromwell, Biomedical Instrumentation, Prentice Hall, 2011.
2	Thyagarajan S., Selvamurugan N., Rajesh M. P., Nazeer R. A., Thilagaraj W., Barathi S., and Jaganthan M. K., Biology for Engineers, Tata McGraw Hill, New Delhi, 2012.
Refer	rence Books:
1	John E Hall, Gyton's Medical Physiology, 12th edition, 2011.
2	Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", PHI/Pearson Education, 4th edition, 2001.
3	L. E. Baker L. A. Geddes, "Principles of Applied Biomedical Instrumentation", John Wiley and Sons, 3rd Edition, 1991.
4	R.S. Khandpur, Handbook of Biomedical Instrumentation, 2014 McGraw Hill Education (India) Private Limited
5	Anand Natarajan, Biomedical Instrumentation and Measurement, PHI Learning (14 December 2015)
6	G.S.Sawhney, Fundamentals of Biomedical Engineering, New Age International (P) Limited , Publication
Any	other (Access to AI tools / Data driven insights (if applicable) or any other):
1	https://jamesclear.com/wp-content/uploads/2016/08/ABriefGuidetoAcceleratedLearning.pdf
2	You-tube video links: By Dr. Siddharth Warrier, Neurologist i) The neuroscience of learning: https://www.youtube.com/watch?v=iVXV4KuBVKY ii) How to think better: https://www.youtube.com/watch?v=bGsA0agLlTY iii) 9 Insane Memory Hacks from a Neurologist: https://www.youtube.com/watch?v=anjZDliSYww v) Neuroscience and Creativity: https://www.youtube.com/watch?v=GrIHnO6W8Ko

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

End S	End Semester Theory Examination:					
1	Question paper will be of 60 marks					
2	Question paper will have a total of five questions					
3	All questions have equal weightage and carry 20 marks each					
4	Any three questions out of five need to be solved.					

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: FUNDAMENTALS OF PROGRAMMING (C/JAVA)

Object Oriented Programming Methodology - Java Programming (AI & DS Branch)

Course Code	Course Name	Tea (Te		Credits A	ssigned			
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NES14	Object Oriented Programming Methodology - Java Programming (Theory)	03			03			03
NES14	Object Oriented Programming Methodology - Java Programming (Lab)		02			01		01

<u>Object Oriented Programming Methodology - Java Programming (Theory)</u>

Course	Course Name	Teaching Scheme (Teaching Hours)		Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NES14	Object Oriented Programming Methodology - Java Programming (Theory)	03			03			03
		Examination Scheme						
			Theory					
Course	Course Name	Internal Ass	sessment		Term	Practical	Total	
Code		Mid-Term Test	Continuo us Assessm ent	End Sem Exam	Work	& Oral		
NES14	Object Oriented Programming	20	20	60			1	00

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Methodology - Java			
Programming (Theory)			

Course	e Objectives:
1	Understand the fundamental principles of Object-Oriented Programming and how they apply to Java development.
2	Develop proficiency in creating and manipulating classes, objects, and inheritance hierarchies in Java.
3	Learn the features of object orientation - encapsulation, abstraction, and polymorphism in Java programs.
4	Master the concepts of interfaces and abstract classes for creating flexible and modular Java applications.
5	Learn to implement interfaces and abstract classes for achieving contract-based programming and also exception handling to ensure robust and error-resistant Java programs.
Course	e Outcomes: At the end of the course learner will be able to
1	Create and utilize classes, objects, and methods effectively to encapsulate data and behavior in Java programs.
2	Use inheritance and polymorphism concepts to facilitate code reuse and extensibility in Java applications.
3	Design and implement interfaces and abstract classes to achieve contract-based programming in Java.
4	Apply exception handling techniques to ensure robustness and fault tolerance in Java programs.
5	Utilize advanced OOP features like generics and design patterns to enhance code quality and maintainability in Java projects.

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

6	Explain and apply string matching techniques.

<u>Object Oriented Programming Methodology - Java Programming(Lab)</u>

Cours e Code	Course Name	Teaching Scheme (Teaching Hours)			(Credits Assigned					
c dode		Theory	Practical	Tutorial	Theory	Practica l	Tut	Total			
NES14	Object Oriented Programming Methodology - Java Programming (Lab)		02			01		01			
			Exai	nination Sch	ieme						
Cours			Theory		Practica						
e	Course Name	Internal A	ssessment	End Sem	Term Work			Term	1	Total	
Code		Mid-Term Test	Continuous Assessmen t	Exam		& Oral		- 5 5 5 5			
NES14	Object Oriented Programming Methodology - Java Programming (Lab)	ogramming 25 odology - Java		-		25					

<u>Object Oriented Programming Methodology - Java Programming(Lab)</u>

Prerequisite: Structured Programming Approach	
Lab Objective:	
1	To learn the basic concepts of object-oriented programming
2	To study JAVA programming language

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

3	To study various concepts of JAVA programming like multithreading, exception Handling, packages, etc.
4	To explain components of GUI based programming
Lab Ou	itcome: At the end of the course, the students should be able to:
1	Implement classes, objects, and methods effectively to encapsulate data and behavior in Java programs.
2	Efficiently use code reuse with inheritance and polymorphism concepts in Java Applications.
3	Handle Data Objects for CRUD operations and use arrays
4	Apply the idea of Exception Handling in program and to define user defined exceptions
5	Design ,Create,Interact using UI and to perform events from the UI
6	Perform multithreading

Object Oriented Programming Methodology - Java Programming (Theory)

Module		Detailed Content	Hours
1		Introduction to Object Oriented Programming	4
	1.1	OOP concepts: Objects, class, Encapsulation, Abstraction, Inheritance, Polymorphism, message passing.	
	1.2	Java Virtual Machine	1
	1.3	Basic programming constructs: variables, data types, operators, unsigned right shift operator, expressions, branching and looping.	
2		Class, Object, Packages and Input/output	10
	2.1	Class, object, data members, member functions, Constructors, types, static members and functions, Packages in java, types, user defined packages, Input and output functions in Java	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

	2.2	Array, Strings, String Buffer, Vectors	
3		Inheritance and Interface	8
	3.1	Types of inheritance, Method overriding, super, abstract class and abstract method, final, Multiple inheritance using interface, extends keyword	
4		Exception handling and Multithreading	6
	4.1	Exception handling using try, catch, finally, throw and throws, Multiple try and catch blocks, user defined exception	
	4.2	Thread lifecycle, thread class methods, creating threads using extends and implements keywords.	
5		GUI programming in JAVA	8
	5.1	AWT: working with windows, using AWT controls for GUI design	
	5.2	Swing class in JAVA, Introduction to JavaFX- Animation, Button, Canvas, Chart	
			36

Textbooks:		
1	Herbert Schildt, 'JAVA: The Complete Reference', Ninth Edition, Oracle Press.	
2	E. Balagurusamy, 'Programming with Java', McGraw Hill Education.	
Reference	es:	
1	Ivor Horton, "Beginning JAVA", Wiley India.	
2	Dietal and Dietal, "Java: How to Program", 8 th Edition, PHI .	
3	"JAVA Programming", Black Book, Dreamtech Press.	
4	"Learn to Master Java programming", Staredu solutions	
Digital ma	aterial:	
1	www.nptelvideos.in	
2	www.w3schools.com	
3	www.tutorialspoint.com	
4	https://starcertification.org/Certifications/Certificate/securejava	

Internal Assessment:

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report an certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

End S	End Semester Theory Examination:		
1	Question paper will be of 60 marks		
2	Question paper will have a total of five questions		
3	All questions have equal weightage and carry 20 marks each		
4	Any three questions out of five need to be solved.		

<u>Object Oriented Programming Methodology - Java Programming(Lab)</u>

Sugges	Suggested Experiments: Students are required to complete at least 10 experiments.	
Star (*)	Star (*) marked experiments are compulsory.	
Sr. No.	Name of the Experiment	
1	Implementing Classes and Objects for a scenario using object arrays.	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

2	Implementing Interactive Object Creation: Empowering Users to Generate Objects using
	Scanner Class
3	Implementing polymorphism using Method and Constructor for String Manipulation in
	Java
4	Implementing Inheritance and Interfaces for a scenario.
5	Implementation of Abstract Class and Abstract Method for a scenario.
6	Implementing JSON File Handling in Java to implement Create, Display, Update and Delete
	data objects.
7	Handling data with 2D arrays and ArrayList
8	Implement Exception Handling with User Defined Exception
9	Implementing Swing and AWT for creating UI
10	Implementing a class for performing Interaction of UI with JSON data Files.
11	Implementing Action Listeners for UI
12	Implementing Multithreading in Java for a File Processing

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term	Term Work:				
1	Term work should consist of 10 experiments.				
2	The final certification and acceptance of term work ensures satisfactory performance of				
	laboratory work and minimum passing marks in term work.				
3	Total 25 Marks				
	(Experiments: 15-marks, Term work Assessment: 10-marks)				

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: FUNDAMENTALS OF PROGRAMMING (C/JAVA)

C-Programming

(EXTC,ETCS,AU & RO Branch)

Course Code	Course Name	Teaching Scheme (Teaching Hours)				Credits Ass	igned	
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NES14	C-Programming (Theory)	03			03			03
NES14	C-Programming (Lab)		02			01		01

C-Programming(Theory)

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course Name	Theory	Practical	Tutoria l	Theo ry	Practical	Tut	Total
NES14	C-Programming (Theory)	03			03			03
Course		Examination Scheme						
Code	Course Name	Theory		Ter m	Practical &	1	Гotal	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

ſ			Internal Assessment			Wor	Oral	
			Mid-Term Test	Continuo us Assessm ent	End Sem Exam	k		
	NES14	C-Programming (Theory)	20	20	60			100

Course	Course Objectives:				
1	To learn the fundamentals of computers and algorithms.				
2	To understand various steps in program development and control structures.				
3	To understand the concept of functions in C programming.				
4	To understand usage of arrays and strings in C language.				
5	To understand usage of Structures and Union in C language.				
6	To understand the concept of pointers and dynamic memory allocation				
Course	Outcomes:				
1	To formulate simple algorithms for arithmetic and logical problems and translate them into				
	programs in C language.				
2	To implement conditional branching and iteration				
3	To decompose problem into functions and synthesize complete program				
4	To implement usage of arrays and strings in C language.				
5	To implement usage of Structures and Union in C language.				
6	To comprehend pointer concepts and dynamic memory allocation				

C-Programming(Lab)

Course	Course Name		Teaching Scheme (Teaching Hours)			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	Practical	Tut	Total	
NES14	C-Programming (Lab)		02			01	-	01	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

		Examination Scheme						
Course	Course Name		Theory		Dragtigal			
Course Code		Internal A	ssessment	End Term		Practical	Tot	
Code		Mid-Term	Continuous	Sem	Work	& Oral	al	
		Test	Assessment	Exam		Orai		
NES14	C-Programming (Lab)				25	-	25	

Lab Prere	equisite: Basic understanding of Computer Programming terminologies.
Lab Objec	ctives:
1.	To learn the fundamentals of computers and algorithms.
2.	To understand various steps in program development and control structures.
3.	To understand the concept of functions in C programming.
4.	To understand usage of arrays and strings in C language.
5.	To understand usage of Structures and Union in C language.
6.	To understand the concept of pointers and dynamic memory allocation
Lab Outco	omes:
L01	To formulate simple algorithms for arithmetic and logical problems and translate them into
	programs in C language.
LO2	To implement conditional branching and iteration
LO3	To decompose problem into functions and synthesize complete program
L04	To implement usage of arrays and strings in C language.
LO5	To implement usage of Structures and Union in C language.
L06	To comprehend pointer concepts and dynamic memory allocation

C-Programming (Theory)

Module	Content	Hrs

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

1	Introduction, Fundamental of C Programming. Introduction to components of a	5
	Computer System. Introduction to Algorithm and Flowchart	
	Keywords, Identifiers Constants and Variables.	-
	Expression and In-built functions.	
	Datatype and Operators in C.	
	Expressions and Precedence of Operators.	
	• In- built Functions, Pre-processor Directives, library, Header Files.	
2	Control Structure, Branching and looping structures.	6
	Introduction to Control Structures.	
	If statement, If-else statement, Nested if-else, else-if Ladder.	
	Switch statement	
	For loop, while loop	
	Break, continue and go to statements	
3	Functions	4
	Introduction to functions.	
	• Function prototype, Function definition, accessing a function and parameter passing: Call	
	by Value and Call by reference.	
	Recursive function.	
4	Array and Strings	4
	Introduction to Arrays.	
	Declaration and initialization of one. dimensional and two- dimensional arrays.	
	Definition and initialization of String.	
	String functions.	
5	Structure and Union	3
	Concept of Structure and Union.	
	Declaration and Initialization of structure and union.	
	Nested structures.	
	Array of Structures .	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

6	Pointers	4
	 Fundamentals of pointers 	
	 Declaration, initialization and dereferencing of pointers. 	
	 Concept of dynamic memory allocation. 	
	Total	26

Text Bo	Text Books:				
1	E. Balaguruswamy, Programming in ANSI C, McGraw-Hill				
2	Kernighan , Ritchie, "The C programming Language", Prentice Hall of India				
3	Sumitabha Das, Computer Fundamentals and C Programming, McGraw-Hill				
4	Pradeep Day and ManasGosh ,"Programming in C", Oxford University Press.				
Referen	ce Books:				
1	Byron Gottfried, "Programming with C", McGraw Hill (Schaum"s outline series)				
2	KanetkarYashwant," "Let Us C", BPB Publication.				

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

End	Semester Theory Examination:
1	Question paper will be of 60 marks
2	Question paper will have a total of five questions
3	All questions have equal weightage and carry 20 marks each
4	Any three questions out of five need to be solved.

C-Programming (Lab)

Suggest	Suggested Experiments: Students are required to complete at least 10 experiments.					
Star (*)	Star (*) marked experiments are compulsory.					
Sr. No.	Name of the Experiment					
1	Familiarization with programming environment					
2	Simple computational problems using arithmetic expressions					
3	Problems involving control structures & Looping					
4	Demonstrate 1D,2D Array and Strings					
5	Programs to demonstrate simple functions					
6	Programs to demonstrate recursive functions					
7	Problems involving structures					
8	Programs to demonstrate the concept of pointers					
9	Program to understand the concept of dynamic memory Allocation					

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Term	Term Work:					
1	Term work should consist of 10 experiments.					
2	The final certification and acceptance of term work ensures satisfactory performance of					
	laboratory work and minimum passing marks in term work.					
3	Total 25 Marks					
	(Experiments: 15-marks, Term work Assessment: 10-marks)					

COURSE NAME: PROGRAMME CORE COURSE (AI & DS)

Digital Logic & Computer Organization and Architecture

Course Code	Course Name		Teaching Schem	Credits Assigned				
		(Teaching Hour	rsj				
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NPC11	Digital Logic and computer Organization and Architecture (Theory)	02			02			02

<u>Digital Logic & Computer Organization and Architecture (Theory)</u>

Course Code	Course Nome	Teaching Scheme (Teaching Hours)			(Teaching Hours)		Credits Assigned		
	Course Name	Theory	Practical	Tutor ial	Theor y	TW/PR	Tut	Total	
NPC11	Digital Logic and computer Organization and Architecture (Theory)	02			02			02	
				Examin	ation Scho	eme			
Course Code	Course Name	,	Theory		Term Work	Practical & Oral	Т	otal	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

		Internal As	sessment			
		Mid-Term Test	Continuo us Assessm ent	End Sem Exam		
NPC11	Digital Logic and computer Organization and Architecture (Theory)	20	20	60	 	100

<u>Digital Logic & Computer Organization and Architecture (Theory)</u>

Prere	quisite: Knowledge on number systems
Cour	se Objectives:
1	To have an understanding of the basic structure and operation of basic digital circuits and a digital computer.
2	To discuss in detail arithmetic operations in digital systems.
3	To discuss processor organization along with functions of control unit devices.
4	To study the memory hierarchy and principles of advanced computing.
Cour	se Outcomes:
1	To learn different number systems, arithmetic operations and the basics of digital logic.
2	To demonstrate combinational circuits.
3	To demonstrate sequential circuits.
4	To understand the basics of processor organization and architecture.
5	To understand the concept of a control unit.
6	To demonstrate the memory organization.

<u>Digital Logic & Computer Organization and Architecture (Theory)</u>

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Modu le	Content				
	Basics of digital logic				
	1.1 Introduction to Binary, Decimal, Octal, and Hexadecimal number systems and conversion. Codes: Grey, BCD				
1	1.2 Boolean algebra, basic gates and universal gates	06			
	Sum of products and products of sum, minimization with Karnaugh Map (up to four variables)				
	Binary Arithmetic: Addition, subtraction, multiplication, and division, sign magnitude, 1's and 2's complement method of data representation, subtraction using 1's and 2's complement method				
	Combinational Circuits				
2	2.1 Half adder, Full adder, Arithmetic logic unit (ALU)	03			
	2.2 Multiplexer, Demultiplexer, Encoder and Decoder (design is not expected)				
3	Sequential Circuits	03			
	3.1 Flip-Flops.: SR, JK, D, T (Block diagram and truth table)				
	Basics of counters and registers (only concept with a diagram, design is not expected)				
	Processor organization and architecture				
4	4.1 Basic organization of computer and architecture, Von- Neumann model	05			
	4.2 Introduction to buses, types of buses- Address bus, data bus and control bus				
	4.3 Register organization, Instruction formats, addressing modes, instruction cycle				
	Control unit				
5	5.1 Introduction to control unit, its functions with block diagram representation	05			
	5.2 Booth's multiplication algorithm, IEEE floating point representation				
-6	Memory organization	06			

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

6.2	Cache Memory: Concept, need of cache memory, locality of reference, cache mapping methods, design problems based on mapping techniques. Total	26
6.1	Introduction to memory and memory characteristics, types of RAM and ROM, memory hierarchy Cache Memory: Concept, need of cache memory locality of reference, cache	

Textbooks				
1	M. Morris Mano and Michael D. Ciletti, "Digital Design", Pearson Publications			
2	R. P. Jain, "Modern Digital Electronic", McGraw-Hill Publication, 4thEdition.			
1 2 1	William Stalling, "Computer Organization and Architecture: Designing and Performance", Pearson Publication 10TH Edition.			
	John P Hayes, "Computer Architecture and Organization", McGraw-Hill Publication, 3RD Edition.			
	Dr. M. Usha and T. S. Shrikanth, "Computer system Architecture and Organization", Wiley publication.			
Reference	es			
1	Andrew S. Tanenbaum, "Structured Computer Organization", Pearson Publication.			
2	B.Govindarajalu, "Computer Architecture and Organization", McGraw-Hill Publication.			
3	Malvino, "Digital Computer Electronics", McGraw-Hill Publication, 3 rd Edition.			
Useful Link	xs			
Resources				
	https://www.classcentral.com/course/swayam-computer-organization-and-architecture-a-pedagogical-aspect-9824			
2	https://nptel.ac.in/courses/106/103/106103068/			
3	https://archive.nptel.ac.in/courses/108/105/108105132/			
4	https://www.coursera.org/learn/comparch			
AI Tools				
1	https://www.sifive.com/cores/intelligence			
2	https://cloud.google.com/tpu?hl=en			
3	https://shorturl.at/CTiPC			

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Industry A	Industry Articles				
1	https://shorturl.at/OllE9				
2	https://rb.gy/m4mnki				
Case Studi	es				
1	https://shorturl.at/M2X0I				
2	https://t.ly/Av51F				

Tutorial

A tutorial is to be conducted for a duration of an hour every week.

It should contain a minimum of 7 tutorials based on the syllabus.

Internal Assessment

Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks. The

Mid Term test is to be conducted when approximately 50% syllabus is completed and its duration will

be one hour.

Continuous Assessment

 $Continuous\ Assessment\ is\ of\ 20\ marks.\ The\ rubrics\ for\ assessment\ will\ be\ considered\ upon\ approval$

by the subject teachers. It should be a minimum of 2 or a maximum of 4 from the following table

Sr. No.	Rubrics	Marks
1	Multiple Choice Questions (Quiz)	5
2	Literature review of papers/journals	5

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

3	Participation in event/workshop/talk/competition followed by a small	5					
	report and certificate of participation relevant to the subject						
4	Wins in the event/competition/hackathon pertaining to the course	10					
5	Case study, Presentation, group discussion, technical debate on recent trends	10					
	in the said course						
6	Project-based Learning and evaluation / Extra assignment / Question paper	10					
	solution						
7	NPTEL/ Coursera/ Udemy/any MOOC Certificate course for 4 weeks	10					
8	Content beyond syllabus presentation	10					
9	Creating Proof of Concept	10					
10	Mini Project / Extra Experiments/ Virtual Lab	10					
11	GATE Based on Assignment tests/Tutorials etc	10					
12	Peer Review and participation	5/10					
*For sr.no.7	7, the date of the certification exam should be within the term, and in case a	student is					
unable to c	omplete the certification, the grading has to be done accordingly.						
Indirect As	sessment						
1	Mock Viva/Practical						
2	Skill Enhancement Lecture						
3	3 Extra Assignments/lab/lecture						
End Semes	ter Theory Examination						

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

1	Question paper will be of 60 marks
2	Question paper will have a total of five questions
3	All questions have equal weightage and carry 20 marks each
4	Any three questions out of five need to be solved.

COURSE NAME: PROGRAMME CORE COURSE (EXTC)

Digital System

Course Code	Course Name	Teaching Scheme (Teaching Hours)				Credits Assi	igned	
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NPC12	Digital System (Theory)	02			02			02

Digital System (Theory)

Common Codo	Carrier Name		ing Scheme hing Hours)		Credits Assigned					
Course Code	Course Name	Theory	Practical	Tutor ial	Theor y	TW/PR	R Tut Tota			
NPC12	Digital System (Theory)	02			02			02		
			Exan	nination	Scheme					
1					1	1				
Course	Course Name		Гheory		Term	Practica l	m.	1		
Course Code	Course Name	Internal As		End	Term Work	Practica l &	To	tal		
	Course Name			End Sem Exam	I	l	То	tal		

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

			Assessm ent			
NPC12	Digital System (Theory)	20	20	60	 	100

Co	Course Objectives:				
1	To understand number system representations and their inter-conversions used in digital electronic circuits.				
2	To analyze digital logic processes and to implement logical operations using various combinational logic circuits.				
3	To analyze, design and implement logical operations using various sequential logic circuits.				
Co	Course Outcomes:				
1	To understand types of number systems, digital logic, digital circuits and logic families.				
2	To analyze, design and implement combinational logic circuits.				
3	To analyze, design and implement sequential logic circuits.				
4	To develop a digital logic and apply it to solve real life problems.				

Mod ule		Content	Hrs
1		Number Systems and Codes	02
	1.1	Review of Binary, Octal and Hexadecimal Number Systems, their inter-conversion, Binary code, Gray code and BCD code	
2		Logic Family and Logic Gates	03
	2.1	Digital logic gates, Universal gates, Realization using NAND and NOR gates, Boolean Algebra, De Morgan's Theorem	
3		Combinational Logic Circuits	
	3.1	SOP and POS representation, K-Map up to four variables for minimization of logic expressions	08
	3.2	Arithmetic Circuits: Half adder, Full adder, Half Look ahead adder and BCD adder Subtractor, Full Subtractor, Carry	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

	3.3	Multiplexer and Demultiplexer: Multiplexer operations, Boolean function implementation using MUX, DEMUX and basic gates, Decoder	
4		Sequential Logic Circuits	05
	4.1	Flip flops: RS, JK, Master slave flip flops; T & D flip flops with various triggering methods, Conversion of flip flops	
	4.2	Counters: Asynchronous and Synchronous counters with State transition diagram	
		Total	18

Textbo	Textbooks:				
1	John F. Warkerly, "Digital Design Principles and Practices", Pearson Education, Fifth Edition (2018).				
2	Morris Mano, Michael D. Ciletti, "Digital Design", Pearson Education, Fifth Edition (2013).				
3	R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill Education, Fourth Edition (2010).				
4	A. Anand Kumar, "Fundamentals of Digital Circuits", PHI, Fourth Edition (2016).				
5	Volnei A. Pedroni, "Digital Electronics and Design with VHDL", Morgan Kaufmann Publisher, First Edition (2008).				
6	Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design", Third Edition, MGH (2014).				
Refere	Reference Books:				
1	Thomas L. Floyd, "Digital Fundamentals", Pearson Prentice Hall, Eleventh Global Edition (2015).				
2	Mandal, "Digital Electronics Principles and Applications", McGraw Hill Education, First Edition (2010).				
3	Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, "Digital Systems Principles and Applications", Ninth Edition, PHI (2009).				
4	Donald P. Leach, Albert Paul Malvino, Gautam Saha, "Digital Principles and Applications", The McGraw Hill, Eight Edition (2015).				
5	Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL", Second Edition, TMH (2009).				

Internal Assessment:

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

End S	End Semester Theory Examination:		
1	Question paper will be of 60 marks		
2	Question paper will have a total of five questions		
3	All questions have equal weightage and carry 20 marks each		
4	Any three questions out of five need to be solved.		

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: PROGRAMME CORE COURSE (ETCS)

Digital Electronics

Course Code	Course Name	Teaching Scheme				Credits Ass	igned	
		(Teaching Hours)						
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NPC13	Digital Electronics (Theory)	02			02			02

Digital Electronics (Theory)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Course Code	Course Name	Theory	Practical	Tutori al	Theor y	TW/PR	Tut	Total
NPC13	Digital Electronics (Theory)	02			02			02
			Exa	mination	Scheme			
Course Code	Course Name		Theory		Term Work	Practical & Oral	То	tal

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

		Internal Assessment				
		Mid-Term Test	Continuo us Assessm ent	End Sem Exam		
NPC13	Digital Electronics (Theory)	20	20	60	 	100

Cou	rse Objectives:				
1	To understand various number systems and their conversions.				
2	To understand binary arithmetic operations				
3	To understand basic logic gates and Boolean algebra for simplification of Boolean expressions.				
4	To understand canonical form representation and k-map reduction technique.				
5	To understand combinational logic circuits and their implementations using logic gates.				
6	To understand the basics of latches, flip flops and shift registers.				
Cou	Course Outcomes:After successful completion of the course students will be able to:				
1	Perform number system representation and their conversion				
2	Perform binary arithmetic operations like addition and subtraction.				
3	Implement basic gates using universal gates and simplify the Boolean expressions using Boolean algebra rules.				
4	Perform logic reduction using reduction technique.				
5	Implement and analyze combinational circuits using basic gates				
6	Compare latches & flip flops and their implementation using logic gates				

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Module	Unit	Contents	Hrs.		
1		Number System and Conversion			
	1.1	Number Systems and code: Decimal, Binary, Octal, Hexadecimal and Gray code	02		
	1.2	Conversion: Decimal to Binary, Octal & Hexadecimal and Binary to Decimal, Octal & Hexadecimal			
2		Binary Arithmetic			
	2.1	Binary Addition, Subtraction, 2's Complement representation and addition & subtraction using 2's Complement.	02		
3	Logic Gates and Boolean Algebra				
	3.1	Introduction to logic gates and their implementation using universal gates.	03		
	3.2	Boolean algebra, De Morgan's Theorem (examples on reducing the Boolean expression is expected)			
4	Logic Minimization and Reduction Technique				
	4.1	Canonical Form representation, K-map (Up to four variables), NAND, NOR Implementation	04		
5	Combinational circuits using Basic gates				
	5.1	Half Adder, Full Adder, Multiplexer, Demultiplexer Encoder and Decoder.	02		
6		Introduction to Latches and flip flops			
	6.1	Latch, Flip-Flop (SR, D, T, JK and Master-Slave), Introduction to Registers.	02		
		Total	15		

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Text l	Text Books:				
1	R. P. Jain, Modern Digital Electronics, Tata McGraw Hill Education, 5th Edition.				
2	Thomas L Floyd, "Digital Fundamentals", Pearson Education, 11th Edition				
Refer	Reference Books:				
1	Melvino & Leach, 'Digital Principles & Applications'', Tata McGraw Hill, 7th edition.				
2	Morris Mano, Digital Design, Pearson Education, 5th Edition, Asia				

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

1	Question paper will be of 60 marks
2	Question paper will have a total of five questions
3	All questions have equal weightage and carry 20 marks each
4	Any three questions out of five need to be solved.

COURSE NAME: PROGRAMME CORE COURSE (AU & RO)

Electronic Measurement and Instrumentation

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		(Teaching Hou	ırs)		1		
		Theory	Theory Practical Tutorial			TW/PR	Tut	Total
NPC14	Electronics Measurement and Instrumentation (Theory)	02			02			02

Electronic Measurement and Instrumentation (Theory)

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Course	Course Name		ning Scheme hing Hours)	Credits Assigned				
Code	Course Name	Theory	Practical	Tutor ial	Theor y	TW/PR	Tut	Total
NPC14	Electronics Measurement and Instrumentation (Theory)	02			02			02
			Exai					
Course		,	Theory					
Code	Course Name	Internal Assessment			Term	Practical &	То	tal
	-	Mid-Term Test	Continuo us Assessm ent	End Sem Exam	Work	Oral	Total	
NPC14	Electronics Measurement and Instrumentation (Theory)	20	20	60			100	

Course Objectives:							
1	Foster an understanding of the fundamental principles of measurement.						
2	Cultivate a comprehension of electronic indicating instruments.						
3	To develop the understanding of DC and AC bridges and their applications.						
4	To disseminate the fundamentals of Data acquisition.						
Course	Course Outcomes:Upon successful completion of this course, students will acquire the following abilities,						
1	Assess the quality of instruments based on static characteristics and perform statistical analysis of measurement errors.						
2	Grasp the principles governing the functionality of electronic indicating instruments.						

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

3	Recognize and formulate bridge circuits for both DC and AC measurements.
4	Gain insight into the fundamental operations of Data Acquisition Systems.

Mo	dule	Content	Hrs.
1		MEASUREMENT AND ERROR	
	1.1	Definitions: Instrument, Accuracy, Precision, Sensitivity, Resolution, Significant Figures.	1
	1.2	Types of Error: Gross errors, Systematic error and random error.	1
	1.3	Statistical Analysis: Arithmetic Mean, Deviation from the Mean, Average Deviation and	04
		Standard Deviation.	
	1.4	Probability of Errors: Normal Distribution of Errors, Probable Error.	1
	1.5	Limiting Errors.	1
2		INDICATING INSTRUMENTS	03
	2.1	DC Ammeter and Voltmeters: Basic and multirange, Voltmeter Sensitivity, Ohms-per-volt	
		Rating and Loading Effect, Voltmeter-Ammeter Method of Measuring Resistance.	
		Ohmmeters: Series and Shunt-Type Ohmmeters.	
		Calibration of DC Instruments, Multimeter.	
3	1	BRIDGES AND THEIR APPLICATIONS	
	3.1	Introduction	1
	3.2	DC Bridges: Wheatstone Bridge, Kelvin Bridge	03
	3.3	AC Bridges and Their Application, Comparison Bridges, Maxwell Bridge, Schering Bridge,	1
		Unbalance condition, Wien Bridge	
4	1	DATA ACQUISITION SYSTEM (DAS)	
	4.1	Introduction, Objective of a DAS, Signal Conditioning of the Inputs, Single Channel DAS,	1
		Multi-Channel DAS, Computer Based DAS.	03
	4.2	Data Loggers, Sensors Based Computer Data Systems, Electromechanical A/D Converter,	1
		And Digital Transducers.	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

	Total Hrs	13				
Textb	oooks:					
1	Modern Electronic Instrumentation and Measurement Techniques by A. D. Helfrick and W. D. Coope Learning Private Ltd.	er, PHI				
2	Electronic Instrumentation by H. S. Kalsi, Third Ed., McGraw Hill					
Refer	References:					
1	Instrumentation: Devices and Systems by C. S. Rangan, G. S. Sarma, and V.S.V. Mani, McGraw Hill Education.					
2	Measurement Systems: Application and Design by Ernest O. Doebelin, McGraw Hill Education.					

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

9.	Peer Review and participation the marks can be left blank	05 Marks
	(with discretion of faculty)	

End S	Semester Theory Examination:					
1	1 Question paper will be of 60 marks					
2	Question paper will have a total of five questions					
3	All questions have equal weightage and carry 20 marks each					
4	Any three questions out of five need to be solved.					

COURSE NAME: FUNDAMENTALS OF VEDIC MATHEMATICS

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course Name	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
NIK11	Fundamentals of Vedic Mathematics (Theory)	02			02		-	02

Fundamentals of Vedic Mathematics (Theory)

ĺ	Course Code	Course Name	Teaching Scheme (Teaching Hours)	Credits Assigned
- 1	code		(reaching nours)	_

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

		Theory	Practical	Tuto rial	Theor y	TW/PR	Tut	Total
NIK11	Fundamentals of Vedic Mathematics (Theory)	02			02			02
				Exan	nination S	cheme		
Course	Course Name	Theory Internal Assessment			Term	Practical		
Code		Mid-Term Test	Continu ous Assessm ent	End Sem Exam	Work	& Oral	Total	
NIK11	Fundamentals of Vedic Mathematics (Theory)		20		1			20

Course Objectives:							
1	Students will gain an understanding of the origins, history, and philosophy behind Vedic Mathematics, which is based on ancient Indian mathematical techniques found in the Vedas.						
2	They will develop skills to perform arithmetic operations such as addition, subtraction quickly and efficiently.						
3	They will learn various techniques to perform multiplication with any number of digits using vedic sutras and also learn to perform multiplication in algebra to solve equations						
4	They will learn various techniques to find square and square roots of any number of digits using vedic sutras						
5	They will learn various techniques to find cube a, fourth power , cube roots and fourth root of any number of digits using vedic sutras						
Cours	e Outcomes:						
1	Students will develop the ability to perform mathematical calculations mentally and quickly using Vedic techniques.						

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

2	Students will enhance their mental math skills and be able to perform arithmetic operations such as addition, subtraction, multiplication, and division mentally, without relying heavily on paper and pen.
3	They will learn to apply Vedic sutras and methods to solve a wide range of mathematical problems, including algebraic equations.
4	They will be able to break down complex problems into simpler steps and apply Vedic techniques to arrive at solutions more easily.
5	They will learn alternative approaches and multiple methods to solve mathematical problems, fostering creativity and adaptability in their problem-solving approach.

Mo	dule	Content	Hrs
1		History and evolution of Vedic Mathematics	1
	1.1	Historical facts about Vedic Mathematics	
	1.2	Sutras and sub sutras of Vedic Mathematics	
2		Vedic sutras for addition and subtraction	4
	2.1	Addition using dot method (Vedic sutras:Ekadhikenpurvena)	
	2.2	Addition without carrying (Vedic sutras: Purnapurnabhyam,sankalan vyavkalanabhyam)	
	2.3	Subtractions using all from 9 last from 10 (Vedic sutras:Nikhilam Navatascaramam dasatah, Vinculum method)	
	2.4	Subtraction using digit separator method (general Method)	
3		Vedic sutras for multiplication	10
	3.1	Multiplication by dot and stick method(General Method) (Vedic sutras:Urdhva triyang [Vertically and crosswise])	
	3.2	Multiplication when numbers are very close to base (all cases) (Vedic sutras:Nikhilam Navatashcaramam dashatah)	
	3.3	Multiplication based on vedic sutra Antyayordashakepi and Antyayoshatakepi	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

	3.4	Multiplication when numbers are very far from the base (all cases) (Vedic sutras:Anurupyena)						
	3.5	Multiplication of three and four numbers						
	3.6	Multiplication by series of 9 and series of 1						
	3.7	Multiplication by observation						
	3.8	Multiplication of binomial equation						
	3.9	Multiplication of algebraic polynomials						
4		Square and Square Root	6					
	4.1	Vedic Methods of finding squares:- 1. Ekadhikena Purvena 2. Yavadunam Tavduni kritya vargena Yojayet 3. Urdhva Tiryagbhyam 4. Duplex method						
	4.2	Vilokanam and Duplex Vedic Method of finding square root						
5		Cube ,Cube root, Fourth Power of a number and Fourth root of a number	6					
	5.1	Vedic Methods of finding cubes:- Yavadunam,Anurupyena,Nikhilam						
	5.2	Vilokanam and Beejank for finding the cube root of any number						
	5.3	Pascal triangle, the method of finding the fourth power of a number						
	5.4	Vilokanam method for finding out the fourth root of number .						
		Total	27					

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Text	Books:								
1	Vedic MathematicsBy Jagadguru Sankracharya Bharti krishna Tirthaji Maharaj								
2	The Essentials of vedic mathematics by Rajeshkumar thakur, Rupa Publication								
Refe	rence Books:								
1.	Advanced vedic mathematics by Rajeshkumar thakur, Rupa publication								
2	Vedic Mathematics made easy by Dhaval bhatia, Jaico publishing house								
3.	Vedic Mathematics:Sixteen simple Mathematical formulas from Vedas, Bharti krishna Tirthaji Maharaj, Motilal Banarsidass Publishers Pvt Ltd.								

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

COURSE NAME: UNIVERSAL HUMAN VALUES-1

Course Code	Course Nome		Teaching Scheme (Teaching Hours)			Credits Assigned			
	Course Name	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total	
NVE11	Universal Human Values-1 (Theory)	02			02			02	

Universal Human Values 1 (Theory)

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned				
Course Code	Course Name	Theory	Practical	Tutor ial	Theor y	TW/PR	Tut	Total	
NVE11	Universal Human Values-1 (Theory)	02			02			02	
				Examin	ation Sch				
Course	Course Name	Theory			Practical				
Code		Internal As Mid-Term Test	Continuo us Assessm ent	End Sem Exam	Term Work	& Oral	Total		
NVE11	Universal Human Values-1 (Theory)		20				20		

Course	Objectives:						
1	Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.						
2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence						
3	Strengthening of self-reflection.						
4	Development of commitment and courage to act.						
Course	Outcomes:						
1	Understanding of natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking						
2	Understanding the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation.						

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Mod	lule	Content	Hrs
1		Course Introduction - Need, Basic Guidelines, Content and Process for Value Education	
	1.1	Purpose and motivation for the course, recapitulation from Universal Human Values-I	2
	1.2	Self-Exploration–what is it? - Its content and process; 'Natural Acceptance' Continuous Happiness and Prosperity-Right understanding	2
	1.3	Continuous Happiness and Prosperity-Right understanding	2
	1.4	Relationship and Physical Facility	2
	1.5	Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario	2
	1.6	Method to fulfill the above human aspirations: understanding and living in harmony at various levels.	2
2		Understanding Harmony in the Human Being - Harmony in Myself!	
	2.1	Understanding human being as a co-existence of the sentient 'I' and the material 'Body'	2
	2.2	Understanding the needs of Self ('I') and 'Body' - happiness and physical facility	2
	2.3	Understanding the Body as an instrument of 'I' ,Understanding the characteristics and activities of 'I' and harmony in 'I'	2
	2.4	Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail	2
		Total	20

Mode of Conduction

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

practice sessions for analyzing and discussing the topic, help the students explore the important or critical elements.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

COURSE NAME: BASIC WORKSHOP PRACTICE

Course Code	Course Name	Teaching Scheme				Credits Ass	igned	
		(Teaching Hours)						
		Theory Practical Tutorial		Theory	TW/PR	Tut	Total	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

NVS11	Basic Workshop Practice (Lab)		04			02		02	
-------	----------------------------------	--	----	--	--	----	--	----	--

Basic Workshop Practice (Lab)

Course			aching Scher		Credits Assigned			
Code	Course Name	Theory	Practical	Tutorial	Th eor y	Practical	Tut	Total
NVS11	Basic Workshop Practice (Lab)		04			02	-	02
		Examination Scheme						
	Course Name							
Course		Internal As	ssessment		Ter	Practical	Total	
Code		Mid-Term Test	Continuo us Assessm ent	End Sem Exam	m Wo rk	& Oral		
NES11	Basic Workshop Practice (Lab)				50			50

Sr No.	Торіс	No. of Hrs.
Trade- 1	Fitting: Use and setting of fitting tools for chipping, cutting, filing, marking, center punching, drilling, tapping. Term work to include one job involving following operations: filing to size, one simple male-female joint, drilling and tapping.	14
Trade- 2	Carpentry: Use and setting of hand tools like hacksaws, jack planes, chisels and gauges for construction of various joints. Term work to include one carpentry job involving a joint.	14
Trade-	Basic Electrical workshop: House Wiring Electrical safety in the workplace. Protective equipment and tools. Different types of cables, electrical wiring diagrams, types of circuits, types of switches. Different wiring methods: Godown wiring, Staircase wiring, House wiring, Extension board. PCB Design, Layout drawing, Positive and negative film making, PCB etching and drilling.	10

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

	Tinning and soldering technique, component mounting and circuit testing.	
Trade- 4	Hardware and Networking: Dismantling of a Personal Computer (PC), Identification of Components of a PC such as power supply, motherboard (Chipset), processor, hard disk, memory (RAM, ROM), CMOS battery, CD drive, monitor, keyboard, mouse, printer, scanner, Pen drives disk drives etc. Assembling a Personal Computer. Installation of Operating System (any one), Boot-up sequence and Device drivers. Installation of application software's, Basic Troubleshooting and Maintenance. Identification of network components LAN card, wireless card, switch, hub, router, different types of network cables (straight cables, crossover cables and rollover cables), Basic networking (LAN, WAN, configure IP address etc) and crimping.	10
	Total Engagement Hours	48

Assessment Tool	Rubrics with Marks	Total Marks
Term Work	Mechanical Workshop:- Fitting: Job Submission - 10 Marks Carpentry: Job Submission - 10 Marks Job Sheet for Fitting and Carpentry - 05 Marks Basic Electrical workshop: House Wiring: Demonstration with Job sheet: 05 Marks PCB: Project with Journal: 05 Marks Hardware and Networking: Oral along with journal submission - 10 Marks Attendance: 05 Marks	50 Marks

COURSE NAME : CO CURRICULAR COURSE

Course Code	Course Name		Teaching Schen (Teaching Hour	Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/ PR	Tut

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

NCC11	Co curricular	02	 	02	 	02
110011	course	02	 	02		02

Co Curricular Course

Course Code	Course Name		Teaching Scheme (Teaching Hours)			Credits Assigned				
Course Code	Course Name	Theory	Practical	Tutor ial	Theor y	TW/PR	Tut	Total		
NCC11	Co curricular Course		04			02		02		
	Course Name		Exam	ination S	n Scheme					
Course		Theory Internal Assessment			Tourn	Practical				
Code		Mid-Term Test	Continuo us Assessm ent	End Sem Exam	Work	Term & Work Oral		Total		
NCC11	Co curricular Course					25		25		

In the first year curriculum, students are allocated 25 marks in each semester for engaging in social work. This initiative involves a range of activities such as cleaning college premises, participating in Kalash Yatra, tree plantation drives, beach cleaning campaigns, organizing cultural programs, attending yoga courses, environmental awareness programs, and more. These activities aim to instill a sense of social responsibility and civic engagement among students, fostering a well-rounded educational experience that goes beyond the classroom.

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Semester II

Syllabus

Group B

Artificial Intelligence and Data Science

Electronics and Telecommunications

Electronics and Computer Science

Automation and Robotics

COURSE NAME: FUNDAMENTALS OF ENGINEERING MATHEMATICS-2

Course Code	Course Name		Teaching Schen (Teaching Hour	Credits Assigned			
	Course Name	Theory	Practical	Tutorial	Theory	TW/ PR	Tut

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

NBS21	Fundamentals of Engineering Mathematics-2 (Theory)	02		01*	02		01	03
-------	---	----	--	-----	----	--	----	----

Fundamentals of Engineering Mathematics-2(Theory)

Course	Course Name		ning Scheme hing Hours)		Credits Assigned						
Code	Course Name	Theory	Practical	Tutor ial	Theor y	TW/PR	Tut	Total			
NBS21	Fundamentals of Engineering Mathematics-2 (Theory)	02		01*	02		01	03			
			Examina				nation Scheme				
Course		Theory				Practica					
Code	Course Name	Internal Assessment		_	Term	l	Т	otal			
		Mid-Term Test	Continuo us Assessm ent	End Sem Exam	Work	& Oral	Total				
NBS21	Fundamentals of Engineering Mathematics-2 (Theory)	20	20	60			1	100			

Tutorials to be conducted batchwise

Course	Prerequi	isite:Coo	rdinate	Geometry	(H Sc	الصبحا
Course	I I CI CUU	13116.600	ıumate	deometr v	111.50.	

Course Objectives:

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

1	To learn about solution methods of higher order linear differential equations
2	To explore concepts of beta and Gamma functions
3	To provide students with complete understanding about the concept of double integration.
4	To learn about applications of multiple integration
5	To apply the concept of inverse of a matrix for coding and decoding of a message.
Cour	se Outcomes:
1	Differential Equations – Students would develop the ability to analyze and solve higher order linear differential equations, model real-world phenomena, apply mathematical techniques to solve differential equations, and interpret the solutions in the context of the problem.
2	Improper Integrals— Students should develop the ability to manipulate and simplify expressions involving the beta and gamma functions, utilizing properties and identities, and recognizing connections to other mathematical functions.
3	Double Integral –Students should be able to apply double integration to solve problems in various fields, such as physics, engineering, economics, and probability.
4	Applications of Double Integrals –Students should understand the geometric interpretation of double integrals,the approach for finding areas, volumes, centers of mass, moments of inertia, and computing average values and expected values in probability and statistics.
5	Coding and Decoding: Students should understand the application of inverse of a matrix to code and decode the message

Module		Content				
1		Higher order Linear Differential Equations with constant coefficient				
	1.1	Complementary function and particular integrals of differential equations of the type $f(D)y = 0$ (Homogeneous case)				
	1.2	Complementary function and particular integrals of differential equations of the type $f(D)y = X$ (Nonhomogeneous case) where X is e^{ax} , $\sin(ax+b)$, $\cos(ax+b)$, x^n , $e^{ax}V$, xV .				
	1.3	Method of variation of parameters				
2		Beta and Gamma function				
	2.1	Beta and Gamma functions and its properties,Examples				

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

3		Double Integrals	10					
	3.1	Double and Iterated Integrals over Rectangles Double Integrals over General Regions						
	3.2	Double Integral by change of order						
	3.3	Double Integrals in Polar Form, Double integration by change of coordinates (Cartesian to polar)						
4		Application of Double Integration:	02					
	4.1	Area and Mass by Double Integration						
5		Coding and Decoding						
	5.1	Methods of Encoding and decoding						
	5.2	Hill Cipher coding and decoding using modulo function						
	5.3	Examples of coding and decoding.						
		Total	28					

Tex	tbooks:
1	R.K.Jain and S.R.K.Iyengar "Advanced Engineering Mathematics",Alpha science International Ltd.
2	Advanced Engineering Mathematics, H.K Dass,S. Chand Publications
Ref	erence Books:
1	Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, Inc
2	B.S. Grewal, " Higher Engineering Mathematics",Khanna Publication
3	George B. Thomas, Weir & Hass, "Thomas' Calculus",Pearson
4	George F. Simmons, "Differential Equations with Application", Tata Mc. Graw Hill Edition
5	Howard Anton, Chris Rorres,"Elementary Linear Algebra",wiley Publication

Internal Assessment:

1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of 20 marks. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

En	nd Semester Theory Examination:
1	Question paper will be of 60 marks
2	Question paper will have a total of five questions
3	All questions have equal weightage and carry 20 marks each
4	Any three questions out of five need to be solved.

COURSE NAME: ENGINEERING PHYSICS

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Course Code	Course Name	Teaching Scheme				Credits Ass	igned	
		(1	Teaching Hou	rsj		1		
		Theory	Theory Practical Tutorial			TW/PR	Tut	Total
NBS12	Engineering Physics (Theory)	02			02			02
NBS12	Engineering Physics (Lab)		02			01		01

Engineering Physics (Theory)

Course Code	Course Name	Teaching Scheme (Teaching Hours)				Credits Assi	gned		
		Theory	Practical	Tutorial	Theory	TW/PR	Tu t	Total	
NBS22	Engineering Physics (Theory)	02			02			02	
Course Code	Course Name	Examination Scheme							
			Theory		Term	Practical	7	Total	
		Internal A	Assessment	End Sem	Work				
		Mid-Term Continuous Exam Test Assessment							
NBS22	Engineering Physics (Theory)	20	20	60			100		

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Pre- rec	Pre- requisites for the course: HSc. level Physics							
Course	Course Objectives:							
1	To provide inclusive knowledge and skill, necessary for solving problems in the engineering field							
2	To provide inclusive knowledge and skill, necessary for venturing in the research field.							
Course	Outcomes:							
1	Learners will be able to understand the foundation of quantum mechanics and how to solve problems in different areas of modern technology							
2	Learners will be able to understand the basics and different applications of differently conducting materials like semiconductors and supercapacitors							
3	Learners will be able to understand the foundation of-fiber optics and their applications in the areas of communication, medical science and instrumentation							
4	Learners will be able to interpret and explore basic sensing techniques for physical measurements in modern instrumentations							

Engineering Physics (Lab)

Course	Course	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Name	Theory	Practical	Tutoria l	Theo ry	Practical	Tut	Total
NBS22	Engineering Physics (Lab)		02			01		01
	Course		Examination Scheme					
			Theory					
Course		Internal A	ssessment		Ter	Practical		
Code	Name	Mid-Term Test	Continuo us Assessm ent	End Sem Exam	m Wor k	& Oral	Total	
NBS22	Engineering Physics				25	-	25	
	(Lab)							

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Lab Ol	bjectives:
1	To get practical knowledge of the theory learnt and develop experimental skills.
2	To comprehend the importance of precision, accuracy, errors and analyze experimental results.
Lab O	utcomes:
After s	uccessful completion of the course students will be able to:
1	Learners will be able to understand the dependance of photo current on frequency and intensity
	of light
2	Learners will be able to understand the efficiency of Supercapacitor in terms of charging and
	discharging time.
3	Learners will be able to understand the directionality of He-Ne LASER
4	Learners will be able to understand the functioning of photo diode and Hall effect set up as sensor
	for light and magnetic field respectively.

Engineering Physics (Theory)

Module	Content	Hrs
1	QUANTUM MECHANICS: Inadequacy of classical theory; de Broglie hypothesis of matter waves and its experimental verification; Wave packet, group velocity and phase velocity; Heisenberg Uncertainty principle, Thought experiments and applications of HUP, Wave function and its physical interpretation; Schrodinger's time dependent and time independent wave equation; Free particle: finite potential well (qualitatively)	8
2	DIFFERENTLY CONDUCTING MATERIALS:	9
	Semiconductors: Band theory, Direct and Indirect band gap semiconductor; FD distribution function; Fermi energy level in conductors and semiconductor; Intrinsic semiconductors: energy band diagram, Expression for Fermi level; Effective mass; Intrinsic carrier concentration, mobility & conductivity, Extrinsic semiconductors: Fermi energy level, Expression & position; Effect of impurity concentration & temperature on the Fermi level and carrier concentration; Law of mass action, minority charge carrier concentration. Formation of depletion region & potential barrier in a p-n junction, Drift & Diffusion of charge carriers across p-n junction, Drift & Diffusion current density, Energy band diagram & current	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

	densities in unbiased, forward & reverse biased p-n junction.	
	Supercapacitors: Principle, construction, materials and applications, Comparison with capacitor and batteries: Energy density, Power density.	
3	FIBRE OPTICS:	4
	FIBRE OPTICS: Working principle, structure & material, advantage; Critical angle; Acceptance angle; Numerical aperture; fractional change in R.I., Modes of propagation, Single & Multimode fiber, R.I. profile – Step & Graded Index fiber; V Number, Allowed modes, Applications – Fiber optic communication system	
4	PHYSICS OF SENSOR: Optical sensors: Photodiode, Photoresistor, Solar cell; (construction and uses)	3
	Magnetic sensor: Principle of Hall effect, Application	
	Mechanical sensors: Concept of piezoelectricity, Applications	
	Total	24

Refer	Reference Books:		
R1	A text book of Engineering Physics-Avadhanulu & Kshirsagar, S. Chand		
R2	Engineering Physics- D. K. Bhattacharya and Poonam Tandon, Oxford Publications		
R3	Engineering Physics- H. K. Malik, A. Singh, McGraw Hill		
R4	Concepts of Modern Physics- ArtherBeiser, Tata McGraw Hill		
R5	Introduction to Solid State Physics- C. Kittle, John Wiley& Sons		
R6	Semiconductor Physics and Devices: S. M. Sze, Wiley		
R7	Ultracapacitors: The future of energy storage- R.P Deshpande, McGraw Hill		
R8	Handbook of Modern Sensors Physics design and application-Jacob Fraden, Springer, AIP press		

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

End Semester Theory Examination:		
1	Question paper will be of 60 marks	
2	Question paper will have a total of five questions	
3	All questions have equal weightage and carry 20 marks each	
4	Any three questions out of five needs to be solved.	

Engineering Physics (Lab)

Sugge	Suggested Experiments: Students are required to complete at least 10 experiments.		
Star (*) marked experiments are compulsory.			
Sr.	Name of the Experiment		
No.			
1	Determination of 'h' using Photo cell.		
2	Determination of energy band gap of semiconductor		

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

3	Study of Hall Effect
4	Study of PT100 calibration and use as thermometer.
5	Determination of Numerical Aperture of an optical fiber.
6	Study of I-V characteristics of Photo diode.
7	Charging and discharging characteristics of supercapacitor.
8	Study of divergence of laser beam
9	Determination of number of lines on the grating surface using LASER Source.
10	Determination of radius of curvature of a lens using Newton's ring set up
11	Determination of diameter of wire/hair or thickness of paper using Wedge shape film method.
12	Determination of wavelength using Diffraction grating. (Hg/Na source)

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term	Work:
1	Term work should consist of 10 experiments.
2	The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.
3	Total 25 Marks (Experiments: 15-marks, Term work Assessment: 10-marks)

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: ENGINEERING MECHANICS

Course Code	Course Name	Teaching Scheme (Teaching Hours)				Credits A	Assigne	ed
		Theory Practical Tutorial			Theory	TW/PR	Tut	Total
NES21	Engineering Mechanics (Theory)	02			02			02

Engineering Mechanics (Theory)

Course Code	Course Name		aching Scheme aching Hours)		Credits Assi	gned		
		Theory	Practical	Tutori al	Theory	TW/PR	Tut	Total
NES21	Engineering Mechanics (Theory)	02			02			02
Course Code	Course Name	Examination Scheme						
			Theory		Term	Practical	Т	otal
		Internal A	Assessment	End Sem	Work			
		Mid-Term Continuous Test Assessment Exam						
NES21	Engineering Mechanics (Theory)	20	20	60			1	100

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Course	Objectives:
1	To create a strong foundation in basic principles of statics and to apply the knowledge to analyze and solve engineering problems involving different systems of forces, static equilibrium etc.
2	To understand the principles and methods used to analyze the motion and behavior of particles and rigid bodies without the influence of forces.
Course	Outcomes:
1	Understand and analyze the behavior of multiple forces acting in a single plane.
2	Understand the conditions for a body to be in a state of equilibrium and to analyze and solve problems related to the equilibrium.
3	Understand and predict motion, analyze velocity and acceleration, characterize different types of motion without consideration of mass of the body.
4	Do kinematic analysis of linkages and mechanisms by locating instantaneous center of rotation.

Engineering Mechanics (Theory)

Content							
System of Coplanar Forces:	06						
Classification of force systems, Principle of transmissibility, composition and resolution of							
forces. Resultant of coplanar force system (Concurrent forces, parallel forces and							
non-concurrent Non-parallel system of forces). Moment of force about a point, Couples,							
Varignon's Theorem. Force couple system. Distributed Forces in plane.							
Equilibrium of System of Coplanar Forces:							
Equilibrium concept, Conditions of equilibrium for concurrent forces, parallel forces and							
non-concurrent non- parallel general forces and Couples. Free body diagrams. Equilibrium of							
rigid bodies. Types of beams, simple and compound beams, type of supports and reaction.							
Determination of reactions at supports for various types of loads on beams. (Excluding							
problems on internal hinges)							
Kinematics of Particle:	06						
	System of Coplanar Forces: Classification of force systems, Principle of transmissibility, composition and resolution of forces. Resultant of coplanar force system (Concurrent forces, parallel forces and non-concurrent Non-parallel system of forces). Moment of force about a point, Couples, Varignon's Theorem. Force couple system. Distributed Forces in plane. Equilibrium of System of Coplanar Forces: Equilibrium concept, Conditions of equilibrium for concurrent forces, parallel forces and non-concurrent non- parallel general forces and Couples. Free body diagrams. Equilibrium of rigid bodies. Types of beams, simple and compound beams, type of supports and reaction. Determination of reactions at supports for various types of loads on beams. (Excluding problems on internal hinges)						

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

	Motion of particles with variable acceleration. Motion curves. Application of concepts of	
	projectile motion and related numerical. Motion under gravity.	
4	Kinematics of Rigid Body (Instantaneous center of rotation):	04
	Translation, Rotation and General Plane motion of Rigid body. The concept of Instantaneous	
	center of rotation (ICR) for the velocity. Location of ICR for up to 3 links mechanisms. Velocity	
	analysis of rigid bodies using ICR.	
	Total	24
	10411	- •

Text Bo	ooks:
1	Engineering Mechanics by M.D. Dayal
Refere	nce Books:
1	Engineering Mechanics by R. C.Hibbeler.
2	Engineering Mechanics by Beer & Johnston, Tata McGrawHill
3	Engineering Mechanics by F. L. Singer, Harper& RawPublication
4	Engineering Mechanics by Macklin & Nelson, Tata McGrawHill
5	Engineering Mechanics by ShaumSeries
6	Engineering Mechanics by A K Tayal, UmeshPublication.
7	Engineering Mechanics by Kumar, Tata McGrawHill
8	Engineering Mechanics (Statics) by Meriam and Kraige, WileyBools
9	Engineering Mechanics (Dynamics) by Meriam and Kraige, WileyBools

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

End S	End Semester Theory Examination:					
1	Question paper will be of 60 marks					
2	Question paper will have a total of five questions					
3	All questions have equal weightage and carry 20 marks each					
4	Any three questions out of five need to be solved.					

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: ENGINEERING DRAWING

Course Code	Course Name	Teaching Scheme				Credits Ass	signed	
		(Teaching Hours)						
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NES22	Engineering Drawing (Lab)		02 (DH)+ 02(AutoCAD)			02		02

Engineering Drawing (Lab)

Course Code	Course Name		aching Scheme eaching Hours)		Credits Assi	gned		
		Theory	Practical	Tutoria l	Theory	TW/PR	Tut	Total
NES22	Engineering Drawing (Lab)		02 (DH)+ 02(AutoCAD)			02		02
Course Code	Course Name	Examination Scheme						
			Theory		Term	Practical	Т	otal
		Internal A Mid-Term Test	Assessment Continuous Assessment	End Sem Exam	Work			
NES22	Engineering Drawing (Lab)				25	25	50	

Note: 2 Hrs Drawing Hall & 2 Hrs AutoCAD Practical

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Lab Objectives:							
1	To impart and inculcate proper understanding of the theory of projection, the knowledge of reading a drawing and to improve the visualization skill.						
Lab Outco	Lab Outcomes						
	Apply the basic principles of projections in converting 3-D view to 2-D drawing with and without section.						
2	Read a given drawing and visualize a 3-D object from the given two or three views.						

Sr	Topic						
No.							
1	Orthographic Projections:	08					
	Fundamentals of orthographic projections. Different views of a simple machine part as per						
	the first angle projection method recommended by I.S.						
2	Sectional Orthographic Projections:						
	Basic concept and significance of sectional orthographic projections. Full sectional view of						
	simple machine parts (Excluding half section).						
3	Isometric Views:	08					
	Isometric Views, Conversion of Orthographic Views to Isometric Views (Excluding Sphere						
	and circle on an inclined plane).						
	Total Hours	24					

AutoCAD (Lab)

Lab Obj	Lab Objectives:						
1	To inculcate the skill of drawing with the basic concepts.						
2	To Use AutoCAD for daily working processes.						
3	To teach basic utility of Computer Aided drafting (CAD) tool						
Lab Outcomes: Students will be able to							
1	Apply the basic principles of projections in 2D drawings using CAD software.						

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

2	eate, Annotate, Edit and Plot drawings using basic AutoCAD commands and features.						
3	Apply basic AutoCAD skills to draw different views of a 3D object.						
4	Apply basic AutoCAD skills to draw the isometric view from the given two views.						

Sr No.	Торіс				
1	Overview of Computer Graphics Covering: Listing the computer technologies that impact on graphical communication, demonstrating knowledge of the theory of CAD software such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.	08			
2	Customization & CAD Drawing: Consisting of set up of the drawing page and the printer including scale settings, Setting up of units and drawing limits, ISO and ANSI standards for coordinate dimensioning.	08			
3	Annotations and other Functions Covering: Applying dimensions to objects, applying annotations to drawings, Changing line lengths through modifying existing lines (extend/lengthen), Printing documents to paper using the print command, orthographic projection techniques, Drawing sectional views of objects (simple machine parts), Drawing isometric views by using Isometric drafting.	08			
	Total Practical Hours	24			

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Text Bo	ooks:
1	N.D. Bhatt, "Engineering Drawing (Plane and solid geometry)", Charotar Publishing House Pvt. Ltd.
2	N.D. Bhatt & V.M. Panchal, "Machine Drawing", Charotar Publishing House Pvt. Ltd.
Refere	nce Books:
1	Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publisher.
2	Prof. Sham Tickoo (Purdue University) Gaurav Verma, "(CAD Soft Technologies) :Auto CAD 2012
	(For engineers and Designers)", Dreamtech Press NewDelhi.
3	Dhananjay A Jolhe, "Engineering Drawing" Tata McGraw Hill.

Examination Sc	Examination Scheme :					
Assessment Tool	Way to Conduct	Marks				
Term Work	1. Engineering Drawing A3 size Assignment Sheets -10 Marks 2. AutoCAD assignments to be printed on A4 size sheets - 10 Marks 3. Attendance -5 Marks	25 Marks				
Practical Examination	1. Solve 2 compulsory questions. 2. Question on Orthographic Projection / Sectional Orthographic Projection - 15 Marks 3. Question on Isometric Projection- 10 Marks 4. Should be conducted for 2 Hours.	25 Marks				

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: BASIC ELECTRICAL ENGINEERING

Course Code	Course Name	Teaching Scheme				Credits As	signed	
		[]	Teaching Hou	rs)				
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NES23	Basic Electrical Engineering (Theory)	03			03		-	03
NES23	Basic Electrical Engineering (Lab)		02			01		01

Basic Electrical Engineering (Theory)

Course Code	Course Name	Teaching Scheme (Teaching Hours)				Credits Assigned			
		Theory	Practical	Tutori al	Theory	TW/PR	Tut	Total	
NES23	Basic Electrical Engineering (Theory)	03			03			03	
Course Code	Course Name	Examination Scheme							
		Theory Term Practical					Total		
		Internal Assessment End Sem			Work				
		Mid-Term Test	Continuous Assessment	Exam					
NES23	Basic Electrical Engineering (Theory)	20	20	60			100		

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Prereg	Prerequisite: Resistance, inductance, capacitance, series and parallel connections of resistance, concepts of							
voltage	voltage, current, power and energy and its units. Working of wattmeter, Magnetic circuits, MMF, Magnetic field							
strengt	h, reluctance, series and parallel magnetic circuits, BH Curve, Time domain analysis of first order RL and							
RC circ	RC circuits							
Course	Objectives:							
1	To provide knowledge on fundamentals of DC circuits and single phase and three phase AC circuits and							
	its applications.							
2	To inculcate knowledge on the basic operation and performance of 1- Φ transformers.							
3	To provide knowledge on fundamentals of DC and AC machines.							
Course	Outcomes:							
1	Apply various network theorems to determine the circuit response / behavior.							
2	Evaluate and analyze 1- Φ circuits.							
3	Evaluate and analyze 3-Φ AC circuits.							
4	Understand the constructional features and operation of 1- Φ transformer							
5	Illustrate the working principle of a DC machine.							
6	Illustrate the working principle of AC machines.							

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Basic Electrical Engineering (Lab)

Course Code	Course Name		Teaching Scheme (Teaching Hours)		Credits Assig	gned		
		Theory	Practical	Tutorial	Theory	TW/PR	Tut	Total
NES23	Basic Electrical Engineering (Lab)		02			01	1	01
Course Code	Course Name		Examination Scheme					
		Theory			Term Work	Practical	To	otal
		Internal .	Internal Assessment End Sem					
		Mid-Term Continuous Exam Test Assessment						
NES23	Basic Electrical Engineering (Lab)				25	-	25	

Lab Ob	Lab Objectives:						
1	To impart the basic concept of network analysis and its application.						
2	To provide the basic concept of ac circuits analysis and its application.						
3	To illustrate the operation of machines and transformer.						
Lab Ou	Lab Outcomes						
1	Interpret and analyze the behavior of DC circuits using network theorems.						
2	Perform and infer experiment on single phase AC circuits.						
3	Demonstrate experiment on three phase AC circuits.						
4	Illustrate the performance of single-phase transformer and machines.						

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Basic Electrical Engineering (Theory)

Module		Content	Hrs		
1		DC Circuits	12		
	1.1	(Only independent source) Ideal and practical Voltage and current Sources, Source Transformation, Kirchhoff's Laws,			
	1.2	Star-Delta / Delta-Star Transformation, Mesh and Nodal Analysis.			
	1.3	Superposition, Thevenin's Theorem			
	1.4	Norton's Theorem and Maximum Power Transfer Theorem.			
2		AC Circuits	12		
	2.1	Generation of alternating voltage, basic definitions, average and rms values, phasor and phase difference, sums on phasors.			
	2.2	Single-phase ac series and parallel circuits consisting of R, L, C, RL, RC, RLC combinations, Definitions - real, reactive and apparent power, admittance (Y), Series and parallel resonance, Q factor.			
3		Three Phase Circuits			
	3.1	Generation of Three-Phase Voltages, voltage & current relationships in Star and Delta Connections,			
	3.2	Power measurement in three phase balanced circuit(Only two wattmeter method).			
4		Transformers	5		
	4.1	Working principle of single-phase transformer, EMF equation of a transformer, Transformer losses			
	4.2	Actual (practical) and ideal transformer, Phasor diagram (considering winding resistance and magnetic leakage) Equivalent circuit. Open-circuit test (no-load test), short circuit (SC) test, efficiency.			
5		DC Machines			
	5.1	Principle of operation of DC generators and DC motors, constructional details, and classification of DC machines, e.m.f. equation of generator/motor, applications.			

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

6		AC Machines				
	6.1	Rotating magnetic field produced by three phase ac, principle of operation of Three-phase induction motor, constructional details, and classification of Induction machines.				
Self-study Topic		Introduction to type of Batteries, Lithium-ion and Lead Acid Batteries, Charging and Discharging, Application.				
		Total	39]		

Text I	Books:
1	V. N. Mittal and Arvind Mittal "Basic Electrical Engineering" Tata McGraw Hill, (Revised Edition)
2	Vincent Del Toro "Electrical Engineering Fundamentals", PHI Second edition, 2011
3	Edward Hughes "Hughes Electrical and Electronic Technology", Pearson Education (Tenth edition)
4	D P Kothari and I J Nagrath, "Theory and Problems of Basic Electrical Engineering", PHI 13th edition 2011.
5	M. Naidu, S. Kamakshaiah "Introduction to Electrical Engineering" McGraw-Hill Education, 2004
6	B.R Patil "Basic Electrical Engineering" Oxford Higher Education
Refer	rence Books:
1	B. L. Theraja "Electrical Engineering " Vol-I and II.
2	S. N. Singh, "Basic Electrical Engineering" PHI , 2011Book

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

End S	End Semester Theory Examination:				
1	Question paper will be of 60 marks				
2	Question paper will have a total of five questions				
3	All questions have equal weightage and carry 20 marks each				
4	Any three questions out of five need to be solved.				

Basic Electrical Engineering (Lab)

Suggest	Suggested Experiments: Students are required to complete at least 10 experiments.				
Star (*)	marked experiments are compulsory.				
Sr. No.	Name of the Experiment				
1	Introduction and use of measuring instruments – voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors, and inductors.				
2	To measure output voltage across load resistor/current through load resistor and verify the result using Mesh and Nodal analysis.				
3	Verification of Superposition Theorem.				

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

4	Verification Thevenin's Theorem/ Norton's Theorem.
5	Verification Maximum Power Transfer Theorem.
6	To find resonance conditions in a R-L-C series resonance circuit
7	To find resonance conditions in a R-L-C parallel resonance circuit.
8	To measure relationship between phase and line, currents and voltages in three phase
	system (star & delta)
9	To measure Power and phase in three phase system by two wattmeter method.
10	To find the equivalent circuit parameters by conducting OC and SC test on single phase
	transformer.
11	To demonstrate cut-out sections of DC machine.
12	To study AC machine.

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Term	Term Work:					
1	Term work should consist of 10 experiments.					
2	The final certification and acceptance of term work ensures satisfactory performance of					
	laboratory work and minimum passing marks in term work.					
3	Total 25 Marks					
	(Experiments: 15-marks, Term work Assessment: 10-marks)					

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: PROFESSIONAL COMMUNICATIONS AND ETHICS-1

Course	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
NAE21	Professional Communications and Ethics-1 (Theory)	01		02	01		01	02

Professional Communications Ethics-1 (Theory)

Course	Course Nome	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course Name	Theory	Practical	Tutorial	Theor y	TW/P R	Tut	Total
NAE21	Professional Communicatio ns and Ethics-1 (Theory)	01		02	01		01	02
				Examinat	tion Scheme			
Course			Theory			Practi		
Code	Course Name Intern Mid-Te Test		Continu ous Assessm ent	End Sem Exam	Term Work	cal & Oral	Т	otal
NAE21	Professional Communicatio ns and Ethics-1 (Theory)	20	80				1	100

(Two hrs tutorial is divided into batches of 20 - 30 students)

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Со	urse Objectives:			
1	To demonstrate the fundamental concepts of interpersonal and professional communication.			
2	To encourage active listening with focus on content, purpose, ideas and tone.			
3	To facilitate fluent speaking skills in social, academic and professional situations			
4	To train in reading strategies for comprehending academic and business correspondence.			
5	To promote effective writing skills in business, technology and academic arenas.			
6	To inculcate confident personality traits along with grooming and social etiquettes.			
Со	urse Outcomes:			
1	Eliminate barriers and use verbal/non-verbal cues at social and workplace situations.			
2	Employ listening strategies to comprehend wide-ranging vocabulary, grammatical structures, tone and pronunciation.			
3	Prepare effectively for speaking at social, academic and business situations.			
4	Use reading strategies for faster comprehension, summarization and evaluation of texts.			
5	Acquire effective writing skills for drafting academic, business and technical documents.			
6	Successfully interact in all kinds of settings, displaying refined grooming and social skills.			

Sr	Topic	No. of Hrs.
No.		
M1	Fundamentals of Communication: -	4 Hrs
	1.1. Introduction to Theory of Communication	
	• Definition	
	• Objectives	
	• The Process of Communication	
	Organizational Communication	
	1.2. Methods of Communication	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

	1.2 Paradamenta Communication	1
	1.3. Barriers to Communication	
	1.4 Developing Reading and Writing Skills	
M2	2.1. Vocabulary Building	2 Hrs
	Meaning of Words in Context	
	• Synonyms & Antonyms	
	• Collocations	
	• Prefixes & Suffixes	
	2.2. Grammar	
	• Identifying Common Errors	
	○ Subject - Verb Agreement	
	Misplaced Modifiers	
	○ Articles	
	o Prepositions	
	• Tautologies	
	Pleonasms (Redundancies)	
	• Idioms	
М3	BUSINESS CORRESPONDENCE	3 Hrs
	4.1. Seven Cs of Business Correspondence	
	• Completeness	
	• Conciseness	
	• Consideration	
	• Concreteness	
	• Clarity	
	• Courtesy	
	• Correctness	
	4.2. Parts of a Formal Letter and Formats	
	Parts/Elements of a Formal Letter	
	Letterheads and/or Sender's Address	
	○ Dateline	
	○ Inside Address	
	Reference Line (Optional)	
	• Attention Line (Optional)	
	• Salutation	
	• Subject Line	
	• Subject line • Body	
	• Complimentary Close	
	• Signature Block	
	• Signature Block • Enclosures/Attachments	
	Complete/Full Block Format	
	• Complete/ Pull block Politiat	

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

	4.3. Emails	
	Format of Emails	
	Features of Effective Emails	
	Language and style of Emails	
	4.4. Types of Letters in Both Formal Letter Format and Emails	
	Claim and Adjustment Letters	
	Request/Permission Letters	
	• Sales Letters	
M 4	Personality Development and Social Etiquettes	3 Hrs
	6.1. Personality Development	
	Introducing Self and/or a Classmate	
	• Formal Dress Code	
	6.2. Social Étiquettes	
	Formal Dining Étiquettes	
	Cubicle Étiquettes	
	Responsibility in Using Social Media	
	Showing Empathy and Respect	
	Learning Accountability and Accepting Criticism	
	Demonstrating Flexibility and Cooperation	
	Selecting Effective Communication Channels	
M5	Book Review	2 Hrs
	Review of a book.: Students have to read and analyze the book given and should	
	be able to write a two page review on it.	
	Book review presentation	<u> </u>
	Total Engagement Hours	14

List of Tutorials:

S.No	Details of Assignment	Details of Activity	Hour s	Marks
1	Transcription of the public speech along with a plagiarism report	Practice public speech	2	5
2	Transcription of the public speech along with a plagiarism report	Public speech	2	10
3	Case Studies on types of communication, Barriers to effective Communication and its consequences.	Role Play / Case Studies	4	10

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

4	Written record of reading activities	Advanced level reading comprehension with MCQs	4	5
5	Aptitude test	Aptitude test on vocabulary and grammar for Engineers	4	10
6	2 types of letters in complete block format/Email	Request/ Permission; Adjustment / claim; Sales letters	4	10
7	Understanding of Social Etiquettes	Group Activities related to various etiquettes based on Module 4	4	10
8	Presentation on Book Review	Exploration and Analysis of perception related to global environment presented in the Book	4	10 (to be added to Book Review)

Book Review: 20 Marks (List of books will be selected by the respective teachers)

Text	books:
1	Sanjay Kumar & Pushp Lata (2018). Communication Skills with CD. New Delhi:Oxford University
	Press.
2	Hemphill, P.D., McCormick, D. W., & D. (2001). Business Communication with writing
	improvement exercises. Upper Saddle River, NJ:Prentice Hall.
3	Locker, Kitty O. Kaczmarek, Stephen Kyo. (2019). Business Communication: Building Critical Skills. Place
	of publication not identified: Mcgraw-hill.
4	Murphy, H. (1999). Effective Business Communication. Place of publication not identified: Mcgraw-Hill.
5	Raman, M., & amp; Sharma, S. (2016). Technical Communication: Principles and practice. New Delhi:
	Oxford University Press.University of Mumbai, First Year Engineering, (Common for all Branches of
	Engineering) REV2019 'C' Scheme 51/61
6	Kaul, A. (2015). Effective Business Communication. Place of publication not identified: Prentice-Hall of
	India.
7	Rizvi, A. M. (2010). Effective Technical Communication: A guide for Scientists and

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

	Engineers. New Delhi: Tata McGraw Hill.
8	Lewis, N. (2014). Word power made it easy. Random House USA.

Internal Assessment:

- 1) Assessment consists of one Mid Term Test of 20 marks and Continuous Assessment of 20 marks.
- 2) Mid Term test is to be conducted when approx. 50% syllabus is completed.
- 3) Duration of the midterm test shall be one hour.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: UNIVERSAL HUMAN VALUES-2

Course	Carres Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Code	Course Name	Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
NVE22	Universal Human Values-2 (Theory)	02			02			02

Universal Human Values 2 (Theory)

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Course Code	Course Name	Theory	Practical	Tutor ial	Theor y	TW/PR	Tut	Total
NVE22	Universal Human Values-2 (Theory)	02			02			02
		Examination 9			Scheme			
Course		Theory				Donatical.		
Code	Course Name Interna Mid-Ter Test		Continuo us Assessm ent	End Sem Exam	Term Work	Practical & Oral	Total	
NVE22	Universal Human Values-2 (Theory)		20					20

Course	Course Objectives:					
1	Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.					
2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence					
3	Strengthening of self-reflection.					

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

4	Development of commitment and courage to act.						
Course	Course Outcomes:						
1	Broad Reflection on relationships in family, hostel and institute as extended family,						
2	Understanding of human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.						
3	Understanding of the conduct as an engineer or scientist etc.						

Mo	dule	Content	Hrs	
1		Understanding Harmony in the Family - Harmony in Human-Human Relationship		
	1.1	Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and its fulfillment to ensure mutual happiness	2	
	1.2	Understanding the meaning of Trust; Difference between intention and competence	2	
	1.3	Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship	2	
2	Understanding Harmony inSociety			
	2.1	Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals	2	
	2.2	Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family	2	
3		Understanding Harmony in the Nature and Existence - Whole existence as Coexistence		
	3.1	Understanding the harmony in the Nature	2	
	3.2	Understanding Existence as Coexistence of mutually interacting units in all- pervasive space	2	
	3.3	Holistic perception of harmony at all levels of existence.	2	
4		Implications of the above Holistic Understanding of Harmony on		

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

		Professional Ethics					
	4.1	Natural acceptance of human values	2				
	 4.2 Definitiveness of Ethical Human Conduct 4.3 Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order 						
	4.4 Competence in professional ethics						
5							
	5.1	 Constitution, Constitutionalism and Constitutional Law Difference between Constitutional law and other laws Types of Constitution Salient Features of the Constitution of India Preamble to the Constitution of India: Its Role, Vision, Interpretation and 					
	5.2	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
		Total	28				

Mode of Conduction

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

practice sessions for analyzing and discussing the topic, help the students explore the important or critical elements.

Continuous Assessment:

Continuous Assessment is of **20 marks**. The rubrics for assessment will be considered on approval by the subject teachers. The rubrics can be any 2 or max 4 of the following:

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Sr. No	Rubrics	Marks
1	Certificate course for 4 weeks or more: NPTEL/ Coursera/ Udemy/any MOOC	10 marks
2	Wins in the event/competition/hackathon	10 marks
3	Content beyond syllabus presentation	10 marks
4	Creating Proof of concept	10 marks
5	Mini Project / Extra Experiments/ Virtual Lab	10 marks
6	GATE Based Assignment test/Tutorials etc	10 marks
7	Participation in event/workshop/talk / competition followed by small report and certificate of participation relevant to the subject (in other institutes)	05 marks
8.	Multiple Choice Questions (Quiz)	05 marks
9.	Peer Review and participation the marks can be left blank (with discretion of faculty)	05 Marks

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognized by Govt. of Maharashtra)

NAAC accredited with 'A' Grade

Department of Humanities & Applied Sciences

COURSE NAME: CO CURRICULAR COURSE

Course	Course Name		Teaching Schen (Teaching Hour	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	TW/ PR	Tut	Total
NCC22	Co curricular Course	02			02			02

Co Curricular Course

Course Code	Course Name	Teaching Scheme (Teaching Hours)			Credits Assigned			
Course Code		Theory	Practical	Tutor ial	Theor y	TW/PR	Tut	Total
NCC22	Co curricular Course		04			02		02
	Course Name	Examination Scheme						
Course		Theory Internal Assessment			Term	Practical		
Code		Mid-Term Test	Continuo us Assessm ent	End Sem Exam	Work	& Oral	Total	
NCC22	Co curricular Course					25	25	

In the first year curriculum, students are allocated 25 marks in each semester for engaging in social work. This initiative involves a range of activities such as cleaning college premises, participating in Kalash Yatra, tree plantation drives, beach cleaning campaigns, organizing cultural programs, attending yoga courses, environmental awareness programs, and more. These activities aim to instill a sense of social responsibility and civic engagement among students, fostering a well-rounded educational experience that goes beyond the classroom.